A Haar meager set that is not strongly Haar meager

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strongly Meager Sets Are Not an Ideal

A set X ⊆ R is strongly meager if for every measure zero set H, X + H = R. Let SM denote the collection of strongly meager sets. We show that assuming CH, SM is not an ideal.

متن کامل

Every null - additive set is meager - additive †

§1. The basic definitions and the main theorem. 1. Definition. (1) We define addition on 2 as addition modulo 2 on each component, i.e., if x, y, z ∈ 2 and x+ y = z then for every n we have z(n) = x(n) + y(n) (mod 2). (2) For A,B ⊆ 2 and x ∈ 2 we set x + A = {x + y : y ∈ A}, and we define A + B similarly. (3) We denote the Lebesgue measure on 2 with μ. We say that X ⊆ 2 is null-additive if for ...

متن کامل

Strongly Meager Sets Do Not Form an Ideal

A set X ⊆ R is strongly meager if for every measure zero set H, X + H = R. Let SM denote the collection of strongly meager sets. We show that assuming CH, SM is not an ideal.

متن کامل

Strongly meager sets of size continuum

We will construct several models where there are no strongly meager sets of size 2 ℵ 0 .

متن کامل

Strongly meager sets and subsets of the plane

Let X ⊆ 2 . Consider the class of all Borel F ⊆ X × 2 with null vertical sections Fx, x ∈ X. We show that if for all such F and all null Z ⊆ X, ⋃ x∈Z Fx is null, then for all such F , ⋃ x∈X Fx 6= 2 . The theorem generalizes the fact that every Sierpiński set is strongly meager and was announced in [P]. A Sierpiński set is an uncountable subset of 2 which meets every null (i.e., measure zero) se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Israel Journal of Mathematics

سال: 2019

ISSN: 0021-2172,1565-8511

DOI: 10.1007/s11856-019-1950-y